
Recurring Digits Assignment Report

Marek Michalowski

October 28, 2021

1 Introduction to the problem

The assignment deals with the decimal representation of fractions of the form p
q where

p, q ∈ Z+, p < q and q ends with a digit 9. Specifically, the first two tasks aim
to write two Matlab functions (employing two different algorithms) which find the
recurring digits and their period (the length of the repeating digits sequence) in the
decimal representation of p

q . Later in task 3, these functions are used to find p, q with
q ∈ {10i + 9|i ∈ [0, 44]} and 0 < p < q such that p

q produces the longest recurring digits
sequence and then display that sequence as an array and its length as a scalar. If there
are multiple such pairs with the same period, then all these pairs are to be displayed,
but the sequence of digits only for one chosen pair is to be shown.

2 Brief overview of the theory

2.1 Useful properties of recurring digits

We begin this section by stating some facts for fractions of the form 1
q where q ∈ Z+

does not contain powers of 2 and 5 among its prime factors (i.e. p is co-prime to 10),
based on the book History of the Theory of Numbers by L. E. Dickinson. Such fractions
always lead to decimal representations with recurring digits starting immediately after
the decimal place.[1] More generally, if q = 2m5nr where r ∈ Z+ is not a multiple of
powers of 2 and 5, then the recurring digits are delayed by max(m, n).[1]

1

Since in this problem we are considering denominators of the form 10i + 9, we can in
fact guarantee that these denominators will not be divisible by 2 or 5 (10i + 9 ≡ 1 (mod
2) and 10i + 9 ≡ 4 (mod 5)). Hence, we can use the fact that the recurring digits start
immediately after the decimal point in the implementation of our algorithms.1

Another property of repeating digits shows when considering 1
p where p is a prime not

equal to 2 or 5. In this case, the period 1
p (i.e. the length of the repeating sequence

of digits) is a divisor of p − 1.[1] This is useful as a sanity check when running the
implementation of algorithms for primes:

• If the script ran for p iteration and has not found a repeating sequence, then the
implementation is wrong.

• If the found period does not divide p − 1, then (again) the implementation is
wrong.

The above property can be further developed to show that for any 1 < q ∈ N not
containing factors of powers of 2 and 5 the following two statements are equivalent:

the period of
1
q

is l (1)

l is the smallest integer such that 10l ≡ 1 (mod q).[1] (2)

Equivalence relation in (2) then gives a way to confirm the computed period of 1
q (ad-

mittedly only for smaller q as 10l blows up quickly). Furthermore, it follows that for
any q, period(1

q)≤ q − 1.[1]

Finally, we can extend our property to consider p
q , where q is given as above and p ∈ Z+

with p < q. We notice there are two possibilities: (a) p and q are co-prime, and (b)
p and q share common factors. Intuitively, in case (a), the period of p

q must be the
same as that of 1

q since we can notice that the first can be formed from the second by
multiplying the digits in sequence by p (carrying over the extra powers of 10 as usual)
preserving the underlying periodicity (there is no risk of “overflow” of one period onto
another as that would be equivalent to p

q > 1 when p < q - a contradiction). In case
(b), we can reduce p and q until they do not share any factors. The new pair p′ and q′

will behave as outlined in (a), albeit with a possibly shorter period. It also follows that
if q > 5 is prime, then all p

q will have the same period. This intuition is confirmed by
Dickinson.[1]

1While this property is useful for both algorithms it is not strictly necessary in the case of algorithm 1; an
alternative version of the algorithm 1 will be discussed in the next subsection.

2

2.2 Algorithm 1

The steps in the algorithm for p = p0 and q (as outlined in the introduction) can be
summarised as follows:

1. p0
q = 0.ȧ1a2a3...ȧl...

2. 10p0
q = a1.a2a3...al... =⇒ floor(10p0

q) = a1

3. 10p0
q −

a1q
q =

10p0
q − floor(10p0

q) = 0.a2a3...al... =
p1
q

4. pi = 10pi−1 − aiq

5. Repeat for all generated pi until pi = p0 at which the beginning of the repeating
sequence has been reached again

Notice that we have used the property of repeating digits starting right after the decimal
point since q does not contain factors of powers of 2 and 5. To extend the algorithm to
allow for all values of q, we need to modify the algorithm as follows:

1. If q = 2m5n, we can immediately say there will not be a repeating sequence of
digits.

2. If q = 2m5nr for 1 < r ∈ N, 2 - r and 5 - r, the steps in the algorithm can be per-
formed as described as above but the condition for stopping is pi = pmax(m+1,n+1)
for i > max(m + 1, n + 1), effectively ignoring the first couple digits.

2.3 Algorithm 2

The next algorithm comes from a book titled ”The Vedic Mathematics”, a collection of
algorithms aiming to aid mental arithmetic.[2] Unlike algorithm 1, this one requires q
to end with digit 9 to work. Its steps can be outlined as follows (mod(a, b) signifies the
remainder after division of a by b):

1. p0
q = 0.ȧ1a2a3...ȧl...

2. q = q1q2...qs9→ q′ = q1q2...qs + 1 for some s ∈ N

3. ai = floor(pi−1
q′) since q′ =

q
10 + 0.1

3

4. pi = 10mod(pi−1, q′) + ai

5. Repeat for i ∈ {1, 2, ...} until pi = p0 at which point the beginning of the
repeating sequence has been reached again

3 Implementation

3.1 Task 1 - RecFrac1a

Two versions of this function have been written. The first (RecFrac1a) deals with q
ending with digit 9 and validates that this is the case, while the second (RecFrac1b)
handles the general case of any q ∈ N with the only restriction being 0 < p < q
(which is validated for both functions). The code below shows the implementation of
RecFrac1a, while the other function can be seen in Appendix A.

1 function [k , a] = RecFrac1a(p, q)
2 % RecFrac1 uses Algorithm 1 and returns the recurring digits in the
3 % decimal expansion of p /q , among all pairs of
4 % positive integers (p , q) such that p < q and the last digit ...

of q is a 9
5 if p > q
6 fprintf('Invalid input: %d is larger than %d.\n', p, q);
7 k = [];
8 a = [];
9 return

10 end
11 q = num2str(q);
12 if q (length(q)) , string(9)
13 fprintf('Invalid input: last digit of %d is not 9.\n', q)
14 k = [];
15 a = [];
16 return
17 end
18

19 a = [];
20 p = p;
21

22 while true
23 a = floor(10*p / q);
24 p = 10*p − q*a ;
25 a = [a a];
26 if p == p
27 break
28 end
29 end
30 k = length(a);
31 end

4

The reason for separating the implementation into two scripts is that RecFrac1a has
shorter run-time than either of RecFrac1b and RecFrac2 (the function employing
algorithm 2). It is therefore preferable to use it in task 3.

3.2 Task 2 - RecFrac2

Only one version of RecFrac2 has been written and it can be seen below.

1 function [k , a] = RecFrac2(p,q)
2 % RecFrac2 uses Algorithm 2 and returns the recurring digits in the
3 % decimal expansion of p /q , among all pairs of
4 % positive integers (p , q) such that p< q and the last digit ...

of q is a 9.
5 if p > q
6 fprintf('Invalid input: %d is larger than %d.\n', p, q);
7 k = [];
8 a = [];
9 return

10 end
11 q = num2str(q);
12 if q (length(q)) , string(9)
13 fprintf('Invalid input: last digit of %d is not 9.\n', q)
14 k = [];
15 a = [];
16 return
17 end
18

19 if q > 10
20 q = str2double(q (1:length(q)−1)) + 1;
21 else
22 q = 1;
23 end
24 p = p;
25 a = [];
26

27 while true
28 a = floor(p /q);
29 a = [a a];
30 p = 10*mod(p , q) + a ;
31 if p == p
32 break
33 end
34 end
35 k = length(a);
36 end

Note that although the algorithm 2 is in practice faster than algorithm 1 to use as a
mental arithmetic tool, it is slightly more costly computationally. While RecFrac1
requires only a single division per iteration of the loop, RecFrac2 needs to perform

5

both a standard division and a modulo division. The effect is barely noticeable for
smaller p, q but it does accumulate for larger values. For example, for p = 3433356
and q = 12345678999 the times taken for RecFrac1a and RecFrac2 are (on average
over 10 runs each) 134s and 140s respectively.

3.3 Task 3

As mentioned above, the script for task 3 employs RecFrac1a due to its faster perfor-
mance. The actual implementation can be seen below.

1 % This script uses RecFrac1a to find pairs (p,q), 0<p<q<maxN+1, ...
q ends with

2 % digit 9 such that p/q has the longest period of repeating ...
digits. It then

3 % prints out all those pairs and the repeating digits sequence ...
for one of

4 % the pairs.
5

6 format compact
7 maxN = 449;
8 maxPairs = [];
9 maxDigits = [];

10

11 for s = 9:10:maxN
12 for r = 1:s−1
13 [k, a] = RecFrac1a(r, s);
14 if k > length(maxDigits)
15 maxPairs = [r, s];
16 maxDigits = a;
17 elseif k == length(maxDigits)
18 maxPairs = [maxPairs;r, s];
19 end
20 end
21 end
22

23 fprintf("The highest number of reccuring digits is %d.\n", ...
length(maxDigits))

24 fprintf("The pairs r, s which produce chains of that length are:\n")
25 disp(maxPairs)
26 fprintf("An example of such chain for r=%d and s=%d is:\n", ...

maxPairs(1,1), maxPairs(1,2))
27 disp(maxDigits)

Nonetheless, in the testing of the script the other two functions have been used as well.
The following piece of Matlab code had been inserted between lines 13 and 14 to catch
potential divergences in results. Although it uses RecFrac2, the same code can be (and
has been) used with RecFrac1b by replacing the function call.

6

1 [k2 a2] = RecFrac2(r, s);
2 if k2 , k | | a2 , a
3 fprintf("Incompatible results for r = %d and s = %d\n", r, s)
4 fprintf("k = %d ; k2 = %d ; a = %d ; a2 = %d\n", k, k2, a, a2)
5 end

As a result of testing, no discrepancies have been found.

4 Results

After running the script for task 3 we find that the longest period (of size 418) is pro-
duced when q = 419 and p = 1, 2, 3, ..., 418. Going back to the properties of repeating
fractions we see that it makes sense that the longest period occurs for one of the largest
q since we know it cannot be larger than q − 1. We can however wonder why it is 419
and not 429, 439 or 449. In case of 429 we see that it is a composite number so the
period of its fraction will depend on periods of its prime factors, which will be lower
(and additionally the period will vary with p). On the other hand, 419, 439 and 449
are all prime. The solution here is very much non-trivial, but 419 is a long prime, that
is a prime p for which 10p−1−1

p generates a cyclic number (a number for which con-
sequent integer multiples only permute the order of digits). It turns out that for such
p, 1

p is guaranteed to have p − 1 recurring digits. It also turns out that p = 40k + 9
and p = 40k + 39, k ∈ N can never be long primes, and so 1

p must have less than
p − 1 recurring digits.[3] As 449 and 439 are examples of such primes (for k = 11 and
k = 10 respectively) we can now see why 419 produces the longest period. For more
information, the sequence of long primes can be found the OEIS.[4]

References

[1] Leonard Eugene Dickson. History of the Theory of Numbers: Divisibility and
Primality. Vol. 1. Dover Publications Inc., 2005.

[2] Bharati Krsna Tirthaji. Vedic Mathematics: Sixteen Simple Mathematical Formu-
lae From The Vedas. 16th. Motilal Banarsidass, 2000.

[3] John H. Conway and Richard K. Guy. The Book of Numbers. Copernicus, 1998.

[4] N.J.A. Sloane. The On-Line Encyclopedia of Integer Sequences. 2021.

7

5 Appendix A - RecFrac1b

1 function [k , a] = RecFrac1b(p, q)
2 % RecFrac1 uses Algorithm 1 and returns the recurring digits in the
3 % decimal expansion of p /q , among all pairs of
4 % positive integers (p , q) such that p < q.
5 if p > q
6 fprintf('Invalid input: %d is larger than %d.\n', p, q);
7 k = [];
8 a = [];
9 return

10 end
11

12 m = 0;
13 q temp = q;
14 while true
15 if mod(q temp, 2) , 0
16 break
17 end
18 q temp = q temp/2;
19 m = m+1;
20 end
21 n = 0;
22 while true
23 if mod(q temp, 5) , 0
24 break
25 end
26 q temp = q temp/5;
27 n = n+1;
28 end
29 if q temp == 1
30 disp("The decimal terminates − no repeated digits.")
31 a = [];
32 k = [];
33 return
34 end
35

36 delay index = max(n+1, m+1);
37 a = [];
38 p = [p];
39

40 for i = 1:q
41 a = floor(10*p (i) / q);
42 p = [p (10*p (i)−q*a)];
43 if i ≥ delay index+1
44 if p (delay index) == p (i)
45 break
46 end
47 end
48 a = [a a];
49 end
50 a = a(delay index:length(a));
51 k = length(a);
52 end

8

