
Project 2 Report - Fox and Rabbit Dynamics

UID: 10450192

November 25, 2021

1 Introduction to the problem

The assignment considers the dynamics of a fox’s hunt for a rabbit (Figure 1). The latter (red diamond) starts at
position (0, 800) and tries to escape to its burrow (rec circle) located at 800(sin(π/3), cos(π/3)) by following a circular
path of radius 800 (NB one can wonder if this path is the safest one for the rabbit - it is longer then a straight path
to the burrow but is not as close to the fox). The fox (blue triangle) starts at position (0, 0) but has to first leave a
circular enclosure (dotted circle) through a gate located at (0, 300). After that, it will move directly towards the rabbit
(blue path) unless it cannot see the rabbit because its sight is blocked by a barrier with endpoints A and B. In that
case, it will first move towards point A and then return to following the rabbit directly (red path). Importantly, the
two paths on the diagram are simplified as the actual path of the fox may first lead him towards the rabbit until it
loses sight of it, at which point it will start moving towards A and then return to following the rabbit. The fox catches
the rabbit if the distance between them is less or equal to 0.1m. If the rabbit reaches the burrow before that happens,
he successfully escapes. Finally, there are two cases to be analysed: a) the rabbit and the fox both move at constant
speeds sr0 = 13ms−1 and s f 0 = 16ms−1 respectively and b) their speeds change with distance as s0 exp (−µd(t)) where
d is the distance traveled at time t with µr = 0.0008m−1 and µ f = 0.0002m−1 for rabbit and fox respectively.

Figure 1: A schematic diagram of the situation at the beginning and some of possible paths.

1

2 Deriving the Equations of Motion

2.1 Speed Function

We begin this section by noticing that the first scenario with constant speeds is simply a special case of the second
scenario for µr = µ f = 0, which implies s(t) = s0 exp (0 · d(t)) = s0. This means we can effectively derive one set
of equations of motion for variable speeds, which will work equally well for constant speeds (though its numerical
solution may take longer to compute). Next, we turn to the expression for speed at distance d. We can rewrite d(t) as∫ t

0 s(τ)dτ which can be readily substituted into the expression for s:

s(t) = s0 exp (−µ
∫ t

0
s(τ)dτ).

We can now divide both sides by s0 and take the natural logarithm:

ln (
s(t)
s0

) = −µ
∫ t

0
s(τ)dτ.

If we now take the time derivative of both sides we obtain a separable, first-order ODE:

ṡ = −µs2,

where ṡ denotes the time derivative of s as per standard physics convention (which will be used throughout this report).
Solving the above equation with initial condition s(0) = s0 yields:

s =
1

µt + 1/s0
. (1)

Equation (1) is very useful for our purpose because it means we have an analytic expression for s at any time t and
do not have to concern ourselves with calculating the distance travelled by rabbit or fox at any point (which would be
either done by another ODE or integration within our primary ODE, significantly slowing down the calculation).

2.2 Rabbit’s Motion

To begin, we will denote the position vector of the rabbit as rr, hence its velocity is ṙr. Since we know the path taken
by the rabbit will be circular and directed towards the burrow we can readily write its velocity as:

ṙr = sr(t)
[

cos(θ(t))
−sin(θ(t))

]
,

where θ is the angle between starting and current position of rabbit at time t[1]. To make the analysis more tractable
we start with the case of constant speed and use a substitution θ(t) = ω · t, where ω is the angular velocity. We integrate
the above equation for ṙr with respect to time:

rr =
sr0

ω

[
sin(θ(t))
cos(θ(t))

]
+ c.

It is not difficult to see that in order for the path to be circular with radius 800m and centred at (0, 0) we need ω = rr0
800m

and c = 0. Thus we have for ṙr (skipping units for clarity):

ṙr = sr0

[
cos(sr0t

800)
−sin(sr0t

800)

]
.

2

Next, we make an ansatz for the varying speeds case inspired by the form of the constant speed form of the ODE
in which we substitute sr(t) for sr0. It is not immediately obvious that this will be the correct form of the ODE but
numerically solving it using Matlab shows that it does work. The caveat is that we need to introduce θ as another
variable we are solving for in our ODE and hence we finally obtain the following set of equations for motion of the
rabbit:

ṙr = sr(t)
[

cos(θ(t))
−sin(θ(t))

]
(2)

θ̇ =
sr(t)

800m
. (3)

2.3 Fox’s Motion

Similarly to the notation we used for the rabbit, we will denote the fox’s position and velocity as r f and ṙ f respectively.
We will also need to define the position of the gate as rgate and point A as rA. The fox’s motion starts easily enough,
for the initial stage its velocity is:

ṙ f = s f (t)
[
0
1

]
, (4)

as long as r f (2) < rgate(2) (where (2) refers to the second component of a vector as per Matlab syntax). After reaching
the gate, the motion becomes slightly more involved. If the fox sees the rabbit, the equation becomes:

ṙ f = s f (t)
rr − r f

|rr − r f |
, (5)

where (rr − r f)/|rr − r f | = r̂ f→r is the unit vector pointing from the fox towards the rabbit[1]. Similarly, if the fox
cannot see the rabbit because the barrier is in the way, the equation becomes (using the unit vector notation from
above):

ṙ f = s f (t)r̂ f→A. (6)

3 Implementation and Results

Overall, one main script (main.m) and three function scripts (VelocitySystem.m, CanSeeRabbit.m and CatchEvents.m)
have been written in order to solve the problems in this project.

3.1 CatchEvents.m

This is a relatively simple function which catches 4 types of events in the run of the ode45 solver:

1. the fox reaches the gate

2. the fox stops seeing/can again see the rabbit

3. the fox catches the rabbit

4. the rabbit manages to escape by reaching the burrow.

3

In all of these ode45 will return all positions and the time for the event. Furthermore, if any of (3) and (4) occurs, the
run of ode45 is halted. The function can be seen below.

1 function [events, terminal, dir] = CatchEvents(t, r, GATE, BURROW, BARRIER)
2 %CatchEvents Defines the noteworthy events in the run of ode45.
3 % events(1) − fox reaches the gate
4 % events(2) − fox stops/starts seeing the rabbit
5 % events(3) − fox catches rabbit
6 % events(4) − rabbit reaches the burrow
7 events(1) = r(4) − GATE(2);
8 events(2) = CanSeeRabbit(r(3:4), r(1:2), BARRIER);
9 events(3) = norm(r(1:2) − r(3:4)) − 0.1;

10 events(4) = r(1)−BURROW(1);
11 terminal = [0, 0, 1, 1];
12 dir = [1, 0, 0, 0];
13 end

3.2 CanSeeRabbit.m

This function (seen below) is used to detect whether the barrier blocks the view of the rabbit for the fox. It takes in
positions of the fox, rabbit and the two endpoints of the barrier, then uses these to calculate two equations of lines (fox
→ rabbit and A→ B). It then equals them and solves for x coordinate.

1 function [can see rabbit] = CanSeeRabbit(r f, r r, BARRIER)
2 %CheckIfSee Calculates whether the barrier blocks the view of the rabbit.
3 % ARGUMENTS
4 % r f : fox's position
5 % r r : rabbit's position
6 % BARRIER : barrier's endpoints' positions
7 %
8 % RETURNS
9 % can see rabbit : true if rabbit can be seen and false otherwise

10

11 if r r(1) < BARRIER(1,1)
12 can see rabbit = true;
13

14 elseif r f(1) > BARRIER(1,1)
15 can see rabbit = true;
16

17 else
18 B m = (BARRIER(2,2) − BARRIER (1,2)) / (BARRIER(2,1) − BARRIER(1,1));
19 B c = BARRIER(1,2) − B m*BARRIER(1,1);
20 FR m = (r r(2) − r f(2))/(r r(1) − r f(1));
21 FR c = r f(2) − FR m*r f(1);
22 x = (FR c − B c)/(B m − FR m);
23

24 if BARRIER(1,1) < x && x < BARRIER(2,1)
25 can see rabbit = false;
26

27 else
28 can see rabbit = true;
29 end
30 end

If rA(1) < x < rB(1) is satisfied then the barrier blocks the view so the function returns false. Otherwise it returns true.
Before doing this calculation we also checks whether rr(1) < rA(1) or r f (1) > rA(1), in which case it also returns true.
This check was implemented to reduce the computing time in cases where the barrier is clearly not in the way.

4

3.3 VelocitySystem.m

This function is simply the combined system of equations for the motion of rabbit and fox together. It uses equations
1 through 6 as outlined in section 2. It is displayed below.

1 function drdt = VelocitySystem(t, r, s f0, s r0, mu f, mu r,...
2 GATE, BURROW, BARRIER)
3 %VelocitySystem A system of velocity ODEs for the scenario.
4 % ARGUMENTS:
5 % t : time
6 % r : vector of rabbit's and fox'a positions and rabbit's
7 % angular position
8 % s f0 : initial speed of fox
9 % s r0 : initial speed of rabbit

10 % mu f : decay coefficient for speed of fox
11 % mu r : decay coefficient for speed of rabbit
12 % GATE : gate's position
13 % BURROW : burrow's position
14 % BARRIER : barrier's endpoints' positions
15 %
16 % RETURNS
17 % drdt(1:2) : rabbit's velocity components
18 % drdt(3:4) : fox's velocity components
19 % drdt(5) : angular velocity of rabbit
20

21 A = BARRIER(1,:);
22 drdt = zeros(5,1);
23 speed = @(time, s 0, mu) 1 / (mu*time + (1/s 0));
24

25 s r = speed(t, s r0, mu r);
26 s f = speed(t, s f0, mu f);
27

28 drdt(5) = speed(t, s r0, mu r)/norm(BURROW);
29

30 drdt(1) = s r * cos(r(5));
31 drdt(2) = −s r * sin(r(5));
32

33 if r(4) < norm(GATE)
34 drdt(3) = 0;
35 drdt(4) = s f;
36

37 elseif CanSeeRabbit(r(3:4), r(1:2), BARRIER)
38 drdt(3) = s f * (r(1)−r(3)) / norm(r(1:2) − r(3:4));
39 drdt(4) = s f * (r(2)−r(4)) / norm(r(1:2) − r(3:4));
40

41 else
42 drdt(3) = s f * (A(1)−r(3)) / norm(A(:) − r(3:4));
43 drdt(4) = s f * (A(2)−r(4)) / norm(A(:) − r(3:4));
44

45 end

3.4 main.m

This is the primary script which combines all above functions. The first 10 variables are parameters to be adjusted by
the user to produce different scenarios or modify the precision of the ode45 solver. Later VelocitySystem.m is being
inputted into ode45 with options as defined right above it. The resulting array is split into 3 more useful arrays: 1) path
of the rabbit (path r), 2) path of the fox (path f) and 3) array of combined information about all events (events).
A for loop is then used to identify every event and display the relevant information to the user. Finally, a plot of the

5

scenario is displayed to the user. It can be seen fully below but unfortunately does not fit a single page.

1 % where applicable, values are in SI units
2 s f0 = 16; % fox's initial sped
3 r f = [0; 0]; % fox's initial position
4 mu f = 0.0002; % decay coefficient of fox's speed
5 s r0 = 13; % rabbit's initial speed
6 r r = [0; 800]; % rabbit's initial position
7 mu r = 0.0008; % decay coefficient of rabbit's speed
8 dt = 0.001; % default time step
9 GATE = 300*[0, 1]; % gate's position

10 BURROW = 800*[sin(pi/3), cos(pi/3)]; % burrow's position
11 BARRIER = [350 620;550 300]; % barrier's endpoints' positions
12

13

14 ang = 2*pi*[0.01:0.0001:0.99];
15 fence = norm(GATE)*[sin(ang); cos(ang)];
16 t final max = 800*(pi/3) / (s r0 * exp(−mu r*800*(pi/3)));
17 t span = [0:dt:t final max+1];
18 r0 = [r r; r f; 0];
19

20 options = odeset('AbsTol',1e−7,'RelTol',1e−6, 'Events',...
21 @(t,r)CatchEvents(t, r, GATE, BURROW, BARRIER));
22

23 [¬, r, te,ye,ie] =...
24 ode45(@(t,r)VelocitySystem(t, r, s f0, s r0, mu f,...
25 mu r, GATE, BURROW, BARRIER),...
26 t span, r0, options);
27

28 path r = r(:,1:2);
29 path f = r(:,3:4);
30

31 events = [ie te ye];
32 stopped seeing rabbit = false;
33 for i = 1:size(events, 1)
34 event = events(i,:);
35 if event(1) == 1
36 fprintf("The fox reached the gate at time=%.2fs.\n",event(2))
37 fprintf("Rabbit's position at the time was (%.2f, %.2f)m.\n",...
38 event(3), event(4))
39

40 elseif event(1) == 2 && ¬stopped seeing rabbit
41 fprintf("The fox stopped seeing the rabbit at time=%.2fs.\n",event(2))
42 fprintf("Rabbit's position at the time was (%.2f, %.2f)m.\n",...
43 event(3), event(4))
44 fprintf("Fox's position at the time was (%.2f, %.2f)m.\n",...
45 event(5), event(6))
46 stopped seeing rabbit = true;
47

48 elseif event(1) == 2 && stopped seeing rabbit
49 fprintf("The fox could see the rabbit again at time=%.2fs.\n",event(2))
50 fprintf("Rabbit's position at the time was (%.2f, %.2f)m.\n",...
51 event(3), event(4))
52 fprintf("Fox's position at the time was (%.2f, %.2f)m.\n",...
53 event(5), event(6))
54 stopped seeing rabbit = false;
55

56 elseif event(1) == 3
57 fprintf("The fox caught the rabbit at time=%.2fs.\n",event(2))
58 fprintf("Rabbit's position at the time was (%.2f, %.2f)m.\n",...
59 event(3), event(4))
60 fox rabbit d = norm(event(3:4)−event(5:6));
61 rabbit burrow d = norm(event(3:4) − BURROW(:)');
62 fprintf("Fox was %.2fm away from rabbit at (%.2f, %.2f)m.\n",...
63 fox rabbit d, event(5), event(6))
64 fprintf("Burrow was %.2fm away from rabbit.\n",...
65 rabbit burrow d)

6

66

67 else
68 fprintf("The rabbit managed to escape at time=%.2fs.\n",event(2))
69 fox rabbit d = norm(event(3:4)−event(5:6));
70 fprintf("Fox was %.2fm away from rabbit at (%.2f, %.2f)m.\n",...
71 fox rabbit d, event(5), event(6))
72

73 end
74 fprintf('\n')
75 end
76

77 plot(path r(:,1), path r(:,2), 'r',...
78 path f(:,1), path f(:,2), 'b',...
79 BARRIER(:,1), BARRIER(:,2), 'k−', BURROW(1), BURROW(2), 'rx',...
80 fence(1,:), fence(2,:), 'k−−');
81 legend("Rabbit's path", "Fox's path", 'Barrier', 'Burrow', 'Fence',...
82 'Location', 'Southeast')

When µr = µ f = 0 as in the first task, the rabbit manages to escape this script’s output is:
The fox reached the gate at time=18.75s.

Rabbit’s position at the time was (240.00, 763.15)m.

The fox stopped seeing the rabbit at time=34.92s.

Rabbit’s position at the time was (429.99, 674.62)m.

Fox’s position at the time was (166.43, 494.66)m.

The fox could see the rabbit again at time=48.81s.

Rabbit’s position at the time was (570.08, 561.26)m.

Fox’s position at the time was (349.99, 620.00)m.

The rabbit managed to escape at time=64.44s.

Fox was 161.65m away from rabbit at (569.50, 504.52)m.}

When µr = 0.0008m−1 and µ f = 0.0002m−1 as in the second task, the fox catches the rabbit and the output is:
The fox reached the gate at time=19.32s.

Rabbit’s position at the time was (225.80, 767.47)m.

The fox stopped seeing the rabbit at time=43.39s.

Rabbit’s position at the time was (439.68, 668.34)m.

Fox’s position at the time was (230.73, 555.71)m.

The fox could see the rabbit again at time=53.16s.

Rabbit’s position at the time was (507.80, 618.17)m.

Fox’s position at the time was (350.00, 619.98)m.

The fox caught the rabbit at time=78.93s.

Rabbit’s position at the time was (644.35, 474.15)m.

Fox was 0.10m away from rabbit at (644.29, 474.23)m.

Burrow was 88.58m away from rabbit.

References

[1] J.R. Forshaw and A.G. Smith. Dynamics and Relativity. Wiley, The University of Manchester, 2009.

7

Appendix A - Plots for tasks 1 and 2

Figure 2: Plot of paths taken by rabbit and fox in task 1.

Figure 3: Plot of paths taken by rabbit and fox in task 2.

8

