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1 Introduction to the problem

The aim of the script is to perform a series of analyses on a data set called fruitvegprices-15nov21.csv. It contains
information about various natural products like ’apples’ and ’carrots’. Most notably it contains the prices of certain
varieties of these on different dates between the years 2017 and 2022. The currency is not specified but the prices will
be signified with “$” in this report, just to distinguish them from other values. What follows is a couple of rows from
the middle of the data set which show all columns and some possible entries:

category item variety date price unit
fruit pears doyenne_du_comice | 2021-11-05 1.04 kg
fruit raspberries raspberries 2021-11-05 3.84 kg
fruit strawberries strawberries 2021-11-05 1.86 kg
vegetable beetroot beetroot 2021-11-05 0.49 kg
vegetable brussels_sprouts brussels_sprouts 2021-11-05 0.99 kg
vegetable pak_choi pak_choi 2021-11-05 2.77 kg

Figure 1: A small section of fruitvegprices-15nov21.csv. The full data set contains 9148 rows of 6 columns.

The 5 tasks to be accomplished are:

1. List all distinct “items” in the data set and all distinct varieties for apples, carrots, pears and cabbage.
. Find the mean price for each apple variety.
. Create a box plot of prices for each apple variety and analyse the result.

. Find the seasonal trend for the apple variety with the smallest mean by analysing its time series.
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. Find the correlation coefficient between carrots and a chosen apple variety by comparing their time series.

Since the entire project is centred around data analysis, the live script (“notebook™) editor was used so that each task
can be neatly contained in its code cell while still having access to all previously defined variables.



2 Brief overview of the theory

2.1 Box plots

This section aims to provide a quick introduction to the construction of box plots (a diagram of which can be seen in
Figure 2). The main body of a box plot is the box itself. It is defined to run from the 1st to 3rd quartile of a sample,
meaning it spans 50% of the sample’s data points by definition. The length of the box is known as the interquartile
range (IQR). Inside of it, there is a single vertical line that symbolises the median of the sample, hence dividing the box
into two parts containing 25% of the sample each. The “whiskers” on two sides are supposed to show the minimum
and maximum values of the sample. However, if there are points that are far away from the box (usually more than
1.5IQR away from the box’s boundary in the given direction), they are often treated as outliers and not included by
the whiskers. In a more realistic case than the one depicted in Figure 2, the median will often be skewed to either side
of the box and the whiskers will have uneven lengths, signifying the last point in the given direction which is not far
enough to be treated as an outlier. However, if the sample is distributed close to normally, then the ends of the two
whiskers cover 99.3% of all data points[1].
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Figure 2: An example of a box plot for a normally distributed sample.

2.2 Correlation coefficient

The correlation coefficient measures the linear association between two variables[1]. In practice, this means that the
coefficient is 1 or close to 1 when the two variables are closely related and tend to increase and decrease together (if its
value is -1, then they increase and decrease exactly opposite of one another). On the other hand, if the coefficient is O,
then there is no relation whatsoever. In practice, any coefficient whose absolute value is bigger than 0.7 is considered
to show a significant correlation. Anything less shows at best a low correlation between the two variables in question.
Mathematically, the correlation coefficient p can be expressed as:
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where X and Y are the observed variables, each with N observations. y; and o7; correspond to the average and standard
deviation of the i-th observable[2].



3 Task 1 - distinct items and varieties

To begin, the function readtable() has been used which imported the data into a table variable that can be readily
used in MarLas. Then, groupsummary () was called to extract group counts sorted by headers ’item’ and ’variety’
simultaneously. The actual values of group counts are not very important but the function is a neat way to quickly
obtain a smaller table where each variety appears only once but is still connected to its root ’item’. With that, an
empty containers.Map was created and then filled with ’items’ as keys and ’varieties’ as values using a for loop
iterating over groupsummary () table. This Map (called products) contains all information needed to complete
task 1. Distinct items can be extracted by calling products.keys and distinct varieties for a given item by calling
products(given_item_name). The full code cell for task 1 can be seen below:

1 % TASK 1

2 data = readtable('fruitvegprices-15nov2l.csv');

3 unique_products = groupsummary (data, { 'item', 'variety' }) ;

4 products = containers.Map/();

5

6 for i = l:height (unique_products)

7 item = string(table2array(unique_products (i, 'item')));
8 variety = string(table2array(unique_products (i, 'variety')));
9 if —isKey (products, item)

10 products (item) = [variety];

11 else

12 products (item) = [products(item); variety];

13 end

14 end

15

16 distinct_items = products.keys

17 Apples = products('apples')

18 Pears = products('pears')

19 Carrots = products('carrots')
20 Cabbage = products ('cabbage')

For the sake of formatting, the output of this task has been placed in appendix A.

4 Task 2 - mean prices of apples

% TASK 2

prices.apples = [];
varieties_apples = [];
cheapest_variety = [inf, "_"];

for 1 = 1l:length(Apples)
Variety = Apples(i);

reduced.-data = table2array (data(strcmp(data.variety, Variety), 'price'));
mean_price = mean (reduced.data);

10 if mean_price < str2double (cheapest_variety (1))

11 cheapest_variety = [mean_price, Variety];

12 end

13 disp(Variety + " mean price = $" + mean_price)

14 prices_apples = [prices_apples; reduced.-datal;

15 varieties_apples = [varieties_apples, repmat (Variety, 1, length(reduced-data))];

16 end

18 disp(cheapest_variety)




The code in this section (seen above) focuses on task 2 but also prepares variables for task 3 since to calculate
the mean price and create a price box plot, the same array has to be used. Firstly, two empty variables are cre-
ated: prices_apples and varieties_apples which will be used for the box plot. At the same time, the variable
cheapest_variety is created and set equal to [inf, "_"] where the first entry is the mean price and second the
name of variety. The inf represents infinity and is used as a placeholder since any mean calculated will be less than
it. Thus, it simplifies the code needed in the for loop.

The loop itself iterates over the apple varieties and simultaneously calculates and displays the mean price of each
variety, saves the cheapest variety to the cheapest_variety variable and appends all prices to prices_apples. The
function repmat is used when appending each variety’s name to varieties_apples so that this name appears in the
array as many times as there are prices recorded for it. The output for this task shows that the cheapest variety is the
“other mid season” with a mean price of $0.80 ($0.80344). The rest of the output can be found in appendix A.

S Task 3 - box plots of apples’ prices

Since the variables prices_apples and varieties_apples have been filled in such that they have the same length,
the code needed to create a box plot is very simple:

% TASK 3

boxplot (prices_apples, varieties_apples)
title ("Box plot of apple varieties' prices")
ylabel ('Price ($)"')

xlabel ('Variety'")
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The resulting plot looks as follows:

Box plot of apple varieties' prices
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Figure 3: The parallel box plots for all apple varieties.




As can easily be seen, most of the prices for the different varieties follow slightly skewed normal distributions, where
“Braeburn” variety is almost perfectly symmetric. Most of the apples’ prices appear to be in the same range and with
similar variation over the measured period. Notably, as found in task 2 the “other mid season” variety appears to be
the cheapest and does not vary significantly in price. That makes sense as this variety is most likely a collection of
unnamed or less known apple types at the peak of apple season. The two other varieties which stand out are “Bramley’s
seedling” and “other late season”. These show a big number of outliers a significant distance away from the central
box. The most likely explanation for “Bramley’s” would be temporary trends which made the variety more in-demand.
Outliers for “other late season” are harder to explain; perhaps there was a smaller supply of apples in the late season
of one year which increased their price. However, all these are just hypotheses - the data here cannot provide the full
answer. Finally, we can notice that the “Egremont russet” variety is typically the most expensive one, ignoring the
outliers. Its median price is somewhere around $1.2 and it is not uncommon to see apples of this variety sell for as
much as $1.5. In comparison, other varieties do not usually sell for this much.

6 Task 4 - time series for the cheapest apple variety on average

To construct the time series for the cheapest variety, the corresponding data has to be first extracted from the full data
table. For that, the second entry of cheapest_variety variable has been used with strcmp() - a function which
compares two strings. Used within the table variable it extracts only those rows which have the required cheapest
variety. Having done that, the plotting can be performed right away. The code cell can be seen below:

% TASK 4

1
2 cheap.apple_data = data(strcmp(data.variety, cheapest_variety(2)), {'price', 'date'});

3 plot (table2array(cheap-apple_data(:, 'date')), table2array(cheap-apple_data(:, 'price')))
4 title(cheapest_variety(2)+' variety time series', 'Interpreter', 'none')

5

xlabel ('Date')
6 ylabel ('Price')

The produced time series is:
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Figure 4: The time series for the cheapest apple variety on average.




From the time series, we can see a big jump in price from January 2019 to January 2020, likely meaning that less
known apple types (maybe local varieties) or apples in general were more in-demand in 2020. Alternatively, it could
just mean a smaller supply of apples in 2020 as compared to 2019 due to some supply shock. Outside these two years,
the price variation is much less significant but that could simply be due to the short period recorded in the data set.
Perhaps on a longer time scale, there may be a clearer trend wherein this variation is more/less popular every couple
of years.

7 Task S - price correlation for carrots and “Bramley’s seedling”

For the calculation of the correlation coefficient, the “Bramley’s seedling” variety of apples has been chosen. The
reason is that it contains around the same number of data points (203) as the single variety of carrots (199), meaning
the correlation coefficient will be more significant (for comparison, the number of data points of the variety from the
last task is just 32). First, all relevant rows have been extracted from the main table using strcmp (). Next, the dates
variable was created from the dates recorded for carrots and carrot_prices variable created from corresponding
prices. Using the dates vector, the prices of “Bramley’s seedling” only on the same dates as the ones recorded for
carrots have been saved into bramleys_prices. At this point, we are finished with this specific example since the
two price arrays and the dates array have the same length. If it turned out that the price of “Bramley’s seedling” was
not recorded on some of the dates in dates, then we would need to implement another round of reduction to delete
those data points in carrot_prices and dates which do not share dates with “Bramley’s seedling”.

What remains to do is calling the function corrcoef () to calculate the correlation matrix. Since only two series are
compared, the required correlation coefficient lies on the off-diagonal of this matrix and is equal to 0.5034. The code
cell can be seen below:

1 % TASK 5
2 bramleys_data = data(strcmp (data.variety, 'bramleys_seedling'), {'price', 'date'});
3 carrot.data = data(strcmp(data.item, 'carrots'), {'price', 'date'});
4
5 dates = tablelarray(carrot_data(:, 'date'));
6 carrot_prices = table2array(carrot_-data(:, 'price'));
7 bramleys_prices = table2array(bramleys_data (ismember (dates,
table2array (bramleys_data(:, '"date'))), 'price'));

9 coeff = corrcoef (bramleys_prices, carrot_prices);

10 correlation_coefficient = coeff(2,1)
11 plot (dates, bramleys_prices, 'g-', dates, carrot_prices, 'r-');
12 legend(["Bramley's seedling prices", "Carrot prices"], 'Location', 'best')

13 title("Comparison of price time series for carrots and Bramsley's seedling apples")
14 xlabel ('Date')
15 ylabel ("Price")

This code also plots the two series against each other so that the correlation can be seen more easily:
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Figure 5: The time series for carrots and Bramley’s seedling.

The output correlation coefficient suggests a low level of correlation between the two prices and this can be seen
visually as the peaks and valleys of the two time series seem to only vaguely align. It is difficult to decisively say how
this correlation arises. Perhaps the prices of both rise when there is a bigger societal trend of healthy eating. However,
the more likely explanation is that these two are simply impacted by the natural variations in the economy at large.
The deviation from stronger correlation makes sense in this case as the actual shape of the time series will be dictated
by supply and demand dynamics for that specific product. For example, the two peaks for “Bramley’s seedling” which
are much more extreme than the other in the two series do not seem likely to be caused by the same factors which
produced the peaks in carrots prices at around the same time.
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Appendix A

distinct_items =

'alstromeria’ 'calabrese’ 'coriander’ 'leeks' 'peas’ 'stocks'
'apples’ 'capsicum’ 'courgettes’ 'lettuce’ 'peony’ 'strawberries’'
'asparagus’ ‘carrots’ 'cucumbers’ "lillies’ 'plums’ 'swede’
'beans’ ‘cauliflower’ 'curly_kale' 'mixed_babyleaf_salad’ 'poinsettia’ 'sweet_williams'
'beetroot’ 'celeriac’ ‘currants’ 'narcissus’ 'raspberries’ 'sweetcorn’
‘blackberries’ ‘celery’ ‘cyclamen’ ‘onion' ‘rhubarb’ ‘tomatoes’
'blueberries’ ‘cherries’ 'geranium' 'pak_choi' 'rocket’ 'tulips'
'brussels_sprouts' 'chinese_leaf"' 'gladioli’ 'parsnips’ 'spinach_leaf' 'turnip'
'cabbage’ 'chrysanthemum' 'gooseberries’ 'pears’ 'spring_greens' 'watercress'
Pears = Apples =
"conference" "braeburn"
"doyenne_du_comice" "bramleys_seedling"
"other" "coxs_orange_group"
"egremont_russet"
Carrots = "topped_washed" "gala"
"other_early_season"
Cabbage = "other_late_season"
"red"” "other_mid_season"
"round_green_other"
"savoy"
“summer_autumn_pointed"
"white"

Figure 6: Output for Task 1

braeburn's mean price = $0.88688

bramleys_seedling's mean price = $1.1718
coxs_orange_group's mean price = $0.95984
egremont_russet's mean price = $1.1604
gala's mean price = $0.94881
other_early_season's mean price = $0.9044
other_late_season's mean price = $0.93094
other_mid_season's mean price = $0.80344

Figure 7: Output for Task 2



